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The spin-l/2 anisotropic Heisenberg model is studied by generalizing the 
Migdal-Kadanoff renormalization transformations to quantum spin systems. 
An approximate one-dimensional decimation is employed besides the potential- 
moving approximation in this generalization. It is shown that these approxima- 
tions are valid at high temperatures. The results obtained from these approxima- 
tions suggest that the two-dimensional spin-l/2 X - Y  model shows the critical 
behavior similar to that expected for the classical X-  Y and planar models. 

KEY WORDS: Spin-l/2 anisotropic Heisenberg model; decimations; Mig- 
daI-Kadanoff renormalization transformations; two-dimensional spin-l/2 
X-  Y model. 

1. INTRODUCTION 

In recent years, many attempts (3-19) have been made to generalize the real 
space renormalization group approach (1'2) to quantum spin systems such as 
the Heisenberg, X-Y, and transverse Ising models. Especially, many au- 
thors (3-8) have been interested in the two-dimensional spin-l/2 X - Y  
model, because analyses based on high-temperature series (a~ suggest that 
this model without spontaneous magnetization at nonzero temperature (11) 
shows some kind of phase transition. The computer simulation of this 
model (22) also supports this suggestion. However, up to now, the renormal- 
ization studies (3-8) have given no definite result concerning the critical 
properties of this model. 

In the previous paper (19) we have proposed simple real space renor- 
malization transformations for quantum spin systems. Our approach starts 
with an approximate decimation for one-dimensional systems. Then, on the 
basis of it, the Migdal-Kadanoff transformations (23'24) are generalized to 
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quantum spin systems in higher dimensions. As mentioned above, the 
results of the previous renormalization studies on the two-dimensional 
spin-l/2 X - Y  model are not conclusive. Thus, it is of great interest to 
study this model by the simple approach of the Migdal-Kadanoff transfor- 
mations. 

The results of our approach concerning the critical properties of the 
spin-I/2 anisotropic Heisenberg model in two and three dimensions seem 
qualitatively reasonable. (19) On the contrary, Barma et al.(2s) have pointed 
out that our approach leads to some strange behaviors in some cases. In 
this paper, we discuss the nature of the approximations to see to what 
extent our approach is valid. We also examine the comment of Barma et 
a/. (25) Taking the validity of our approach into account, we analyze the 
results about the two-dimensional spin-1/2 X-Y model. 

Throughout this paper, we treat the spin-l/2 anisotropic Heisenberg 
model in one, two, and three dimensions. The Hamiltonian % of this model 
including the factor - /3  ~ -1 /kBT,  is given by 

% = 2 [ K~o:oj + Kxy(oixo/-t- aYO y~] , (1) 
<ij> 

where T is the temperature and k 8 Boltzmann's constant. Here, oi x, a/y, and 
0 7 denote the Pauli spin operators on the ith site of the d-dimensional 
hypercubic lattice and ~<~> denotes the sum over all nearest-neighbor 
pairs. The parameters Kz and Kx: are written as K z = flJz and Kxy = flJ~y, 
where J~ is an exchange coupling constant among z components of neigh- 
boring spins and J~y is that of x and y components. 

The outline of the remainder of this paper is as follows. In Section 2, 
one-dimensional models are studied by using an approximate decimation. 
The nature of this approximation is investigated by calculating the leading 
corrections to this approximation. In Section 3, two- and three-dimensional 
models are studied by generalizing the Migdal-Kadanoff transformations 
to quantum spin systems. The validity of this generalization is discussed. 
Our conclusion and discussion are given in Section 4. Appendix A deals 
with a derivation of the Migdal-Kadanoff transformations. 

2, APPROXIMATE DECIMATION FOR ONE-DIMENSIONAL 
SYSTEMS 

Below in this section, we treat only one-dimensional systems. Then, the 
Hamiltonian (1) can be written as 

N - - I  

+ + (2) 
i = 0  

where i denotes the lattice site of the linear chain with N + 1 sites. 
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Fig. 1. Decimation in one dimension with scale factor l = 2. Circles denote spin operators to 
be eliminated by the decimation. Dots denote spin operators to remain after the decimation. 
Lines denote the interactions between neighboring spins. Crosses mean  taking a trace over the 
spin operator marked with a cross. 

We consider so-called "decimation" transformation as a renormaliza- 
tion transformation with scale factor h 

exp[ G + % ' ( ( % ) ) ]  = Tr' exp[%({~i})] (3) 

where j = 0, 1 . . . . .  N~ l, i = 0, 1 , . . . ,  N and 

Tr' = r I  Tr~ (4) 

This means to take a partial trace over spin operators except every/th spin 
operator (see Fig. 1). 

For the Ising model (i.e., Kxy = 0) in one dimension, this decimation 
can be carried out exactly. In the quantal case of general anisotropy with 
Kx~ r 0, it is, however, impossible to carry out the decimation exactly even 
in one dimension because of the noncommutative effect of operators in the 
Hamiltonian. Thus, we have to make some approximation to obtain an 
explicit form of the renormalization transformation of interaction parame- 
ters from Eq. (3). In the previous paper, (19) we have proposed the following 
simple approximation to the one-dimensional decimation. Let the Hamilto- 
nian be a sum of nearest-neighbor interactions: 

N - 1  

% = (5)  
i = 0  

where H(oi, o i+ l) denotes a nearest-neighbor interaction between ~r, and 
o,.+l. We divide the Hamiltonian % into clusters of the nearest-neighbor 
interactions as 

% =  ~] H(crtd+,,~k,+z+] (6) 
k=O i =  

By considering only one cluster, the decimation can be carried out, in 
principle, as 

l - 1  \ [ ' l - I  ] 

exp[G+H'(oO,  Ol)]= r IT r~ )exp  / ~H(~i, Oi+l) [ (7) 
i=1 i/ I i=o .1 
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where H'(cro, ~rt) is a new nearest-neighbor interaction between the remain- 
ing spins ~r o and cr l and G is a constant term independent of ~r 0 and ~r r 
Then, using H '  and G, we construct an approximate transformed Hamilto- 
nian %] and an approximate constant term G A as follows: 

N / 1 -  1 

E (8) 
k = 0  

and 

N 6 (9) oA_-- 3- 
This process of approximation (see Fig. 2) can be written as 

exp(G + %') = Tr'exp(SC) = Tr 'exp ~ H(~i,~i+ 0 
i = 0  

N / I - I  ] 
"~ Tr' k__~ ~ exP[i~__oH(~176 

u / t -  1 

= 1"I 
k = 0  

N / l -  1 
N G + E H'(aet, a(k+,),) "~ exp 7 

k = 0  

= exp(O A + %~) (10) 

This approximation takes quantum effect into account within a single 
cluster. It preserves the form of interactions within nearest-neighbor inter- 
actions. It becomes exact, if every H(tTi, tri+ l) commutes with each other. 

Applying the approximation explained above to the Hamiltonian (2), 
we obtain the transformed Hamiltonian %~ in the same form as Eq. (2) 
with new parameters K;, K~y, and N ' =  N/l.  For the case of scale factor 
l = 2, we get the following renormalization transformation (19) : 

and 

with 

K'=�89 e-&C_(K~,K~y)] - �88 (11) 

K'y = �88 e-K'C + (K,,Kxy) ] (12 3 

= K" + 2K~y + ln2 (13) 

C+_ = cosh/~ _ (K , / / ( ) s inh / (  (14) 
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The approximate one-dimensional decimation. The original system is shown in (a). 
The decimation is carried out within one cluster shown in (b) to give a new interaction which 
is denoted by a wavy line in (c). From this new interaction, the renormalized system (d) is 
constructed. 

where 

/ (  ~(K 1 + 8 K ~  )x/2 (15) 

We  can calculate the free energy f per  site of the system f rom these 
renormal iza t ion  t ransformat ions  by  using the wel l -known formula  (2) 

f ( K )  = g (K)  + / - y ( K ' )  (16) 

where 

1 G(K) (17) g(K) = 

Here,  l = 2, d = 1, and  g(K)  is given by  

g(K) = -~ d ( K )  (18) 

Figures 3a and  3b show the numer ica l  results thus ob ta ined  for  the internal  
energy and  the specific heat.  The  exact  results obta ined  for the Ising mode l  
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Fig. 3. Temperature dependence of the internal energy (a) and the specific heat (b) of the 
one-dimensional models. "i.H.f." and "i.H.a.f." denote the isotropic Heisenberg model with 
ferromagnetic and antiferromagnetic couplings, respectively. "XY" denotes the X - Y  model. 
"R.G." means the present result. "B.F." means the result by Bonnet and Fisher. (28) "K." 
means the exact result by Katsura. (29) 
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are not shown in these figures. The results shown in Fig. 3b are similar to 
those obtained by Honda(I~ using a different approximation. 

In order to investigate the nature of this approximation, we calculate 
the corrections to the approximation. In Eq. (10), we make two approxima- 
tions which are represented by ~ .  These two approximations are consid- 
ered as retaining the first-order terms of the following formulas: 

eX(A,+... +A.) = eX~ . . . .  eXA~ B (19) 

and 

e ~  . . . eXA.e c = eA(A~ + . . .  +Ao)+D (20) 
where 

B = k )CB, (21) 
n = 2  

C = ~,, ~."C, (22) 
n = 2  

D = k )knDn (23) 
n=2 

The terms B and D can be derived order by order. (26'27) For example, we 
have 

n - I  

l ~ A •  1 + . . .  + A . )  (24)  
B 2 =  - - 2  i=l 

i n - 1  
D 2 = C 2 + ~ ~ A, -• (Ai+ 1 -[- " ' "  q- An)  (25) 

i=1  

where we have used Kubo's notation 

A x B =- A B  - B A  (26) 

Using Eqs. (19) and (20), we can calculate the correction terms. First, we 
calculate B by substituting 

l - - I  

Ai+l  = ~a H(~il+j,~ril+j+l) 
j = o  

= 1 a n d  n = N/I into Eq. (19). Here, A i is explicitly given by 

Ai  z z = Kz (02 i_202 i_  1 q- o2z._ lO'2z.) 

+ K x y ( % ] _ 2 o f i _ ,  + e x  x 2/_ 10"2/ "l- OY2i_20~i_ 1 "~ Ofi_lOY2i ) (27) 

in the case of l = 2. As A~• = 0 for i :~ j  + 1, the expansion coefficients of 
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B = ~n~X~2B n with h = 1 are given by the following formulas: 

B 2 = - �89 ~ A i X d , + ,  (28) 
i 

B 3 = ~ EAiX2di+i + �89 EAiX+lAiXAi+l (29) 
i i 

B 4  = - -  E ( ~ x A i X 3 A i + l  + 1AiX+21AiXAi+l 
i 

+ l a x  j x 2 a  1 x x x 
8 " x i +  1 ' ' i  " ' i +  1 q "  g A i + 2 A i +  l A i  A i +  1 )  (30) 

where the subscript n of B, represents the order in K z and Kxy. Next, we 
take a partial trace as 

Tr'e A'. �9 �9 eA"e s = e A; �9 �9 �9 ea;e s" (31) 

where 
A; = 6 + n ' (~ r ( i _ , ) t , ~ i t  ) 

t z z / x x 
= G + K,~o2(,,_ ,)o2i + Kfcy(a2(i_l>O2i + O~(i_t)O~i ) (32) 

In Eq. (31), we carry out exactly the calculation within a cluster such as 
Tr_ Tr_ eA'eA'+'a#, lO~i+l . Otherwise, we use an expansion in K" and 

u2i  - 1 u2t  + 1 Ll -- 

K'y  (which are of the second order in K z and Kxy), for example in the 
calculation of terms containing exp(-A;•  The leading order of B' 
becomes of the second order in K; and K'y (and of the fourth order in K~ 
and Kv). We write this leading-order term as B~, where the subscript 
represents the order in K" and K'.. Finally, we get correction terms D for 
n ~ qc, - x ~ N / t a ,  from e A; �9 �9 f e A ' e  a' = e At+ "'" +An+D By using Eqs. "JA - -  "~A - -  / ' i = l ~ t i  

(20) and (25), the leading-order term of D is given by 

t I t X  * D 2 = B  z + ~ a A i  Ai+ 1 (33) 
i 

We drop the non-Hermitian terms appearing in D 2 which should be 
canceled out with higher-order terms, because the exact %' is Hermitian in  %.- 

principle. The renormalized parameters K~, K'y, and G with the leading- 
order corrections thus obtained are as follows: 

~" - 2 6  2 2 O=6+8e (KhG 

-  eO[KxAK) + 
2 2 - ( K ~  + 2 K ; K ~  ) 

g;  K; - = K z K ~ C  ~ 

K ; y =  K ; y -  a e - r K x , ( K  d 

+ 2K GC, G )  

2 K 2 ~ y ) G  + KzK~yC~ ] 

+ K )C. 

(34) 

(35) 
(36) 
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where 

Cz = �88 e zl~z - e -  l~z cosh K - ~ sinh (37) 
K 

K~y e -  ~s inh / (  (38) Cxy- 

and G, K~, K'y, a n d / (  are given by Eqs. (11)-(15). 
These results show that the noncommutative effects neglected in the 

approximation start at the fourth order in K z and Kxy. Thus, the approxi- 
mation becomes better at higher temperatures. The results shown in Fig. 3 
are in good agreement with the previous results obtained by Bonner and 
Fisher (28) and by Katsura (29) at high temperatures, as expected. 

We can easily show that the correction terms to G are independent of 
the scale factor l at the purely fourth order in Kz and Kxy (which means 
that no higher-order term is included). In the calculation of the free energy 
f per site, we use Eq. (16) repeatedly: 

oo 

f(K) = ~ ] / -"g(K (")) (39) 
n = 0  

where 

K ( ' )  = K ("- ])" and K <~ = K (40) 

In Eq. (39), g(K) is given by Eq. (18). Therefore, the leading-order correc- 
tion to f is proportional to 1/1. In this sense, we can improve the 
approximation by increasing the scale factor l at least at high temperatures. 
If we use large l, we can expect further improvement, because the approxi- 
mation becomes exact in the limit l ~  oe in one dimension. 

The results for the free energy of the one-dimensional X - Y  model 
obtained by using the approximate renormalization transformations with 
l =  2 and l =  3 are shown in Table I in comparison with the exact 
results. (29) The results obtained by using Eqs. (34):(36) are also shown. As 
mentioned above, the leading-order correction to G is independent of l and 
the leading-order correction to f is proportional to I l l .  Therefore, the 
relation 

2 X (fex -- ft=2) ~ 3 X (fex -- ft=3) 

holds in the leading order, where f~x denotes the exact free energy and ft=2 
and fl= 3 denote the approximate free energies with l = 2 and l = 3, respec- 
tively. This relation can be rewritten as fex-----3J~=3- 2J~=2" The values of 
3fz= 3 - 2ft= 2 are also shown in Table I. From the results shown in Table I, 
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Table I. Approximate Free Energies and the Exact Free Energy for the 
One-Dimensional Spin-1/2 X -  Y Model a 

i 

3~=2 3~=3 ft=2' 3J~=3 - 2)~=2 fex 

0.1 0 . 7 0 3 1 1 4  0 .703109  0.703096 0.703098 0.703098 
0.2 0 . 7 3 2 6 2 5  0 .732542  0.732268 0.732375 0.732374 
0.3 0 . 7 8 0 5 6 7  0 .780179  0.778298 0.779403 0.779393 
0.4 0 . 8 4 5 2 5 2  0 .844161  0.836512 0.841980 0.841906 
0.5 0 .924621  0 .922323  0.899747 0.917728 0.917409 
0.6 1 .016454  1 .012448 0.958888 1,004434 1.003466 
0.7 1. '118576 1 ,112460  1.003975 1.100229 1.097914 
0.8 1 .228992  1 .220533  1.025558 1.203616 1.198941 
0.9 1 .345978  1 .335133  1.016235 1.313443 1.305087 
1.0 1 .468103  1 .455013 0.972632 1.428834 1,415208 

i 

a The exact free energy obtained by Katsura (29) is denoted by rex. The approximate free 
energies )~=2 and )~=3 are calculated by using the approximate renormalization transforma- 
tions with l = 2 and l = 3, respectively. The free energy calculated by using Eqs. (34)-(36) is 
denoted by j~ = 2'. 

we can see that ft=3 is an approximat ion to fex better than f~=2 at high 
temperatures. Al though the free energy ft=2' calculated f rom Eqs. (34)-(36) 
gives a right direction of correction to fz=2 it breaks down at lower 
temperatures. The quanti ty 3fz=3 - 2fl=2 is an approximat ion to fex better 
than ft= 2, ft= 3, and even 3~= 2' and  it seems to be valid at lower temperatures 
where ft= 2, breaks down. Figures 4a and 4b show the results for the internal 
energy and the specific heat  of the one-dimensional  X - Y  model  obtained 
f rom fi=2, J~=3, and  3f/= 3 - 2 f t =  2. The exact results are also shown. The 
results of 3 f t = 3 -  2fi=2 are better than those of fl=3 and ft=2 at high 
temperatures. We must  note, however, that  the specific heat  based on 
3ft= 3 - 2ft= 2 becomes worse in the temperature region where the result of 
f1=3 becomes worse than those off l= 2. 

3. T H E  M I G D A L - K A D A N O F F  T R A N S F O R M A T I O N S  F O R  T W O -  
A N D  T H R E E - D I M E N S I O N A L  S Y S T E M S  

Below in this section, we consider only the ferromagnetic  cases (i.e., 
J~, Jxy/> 0) in two and three dimensions. 

Migdal  ~23) proposed simple renormalization transformations for the 
classical spin systems. Kadanof f  ~24) rederived and reinterpreted Migdal ' s  
renormalization transformations in a variational method.  We generalize 
these M i g d a l - K a d a n o f f  t ransformations to two- and three-dimensional 
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Fig. 4. The internal energy (a) and the specific heat (b) of one-dimensional spin-l/2 X - Y  

model. "2", "3" and "3-2" denote the results obtained from ft=2, )~=3, and 3fz=3- 2f/=2, 
respectively. "K" means the exact result by Katsura. (29) 
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quantum spin systems, because they are very simple and useful for studying 
two- and three-dimensional models qualitatively or semiquantitatively. 

As is explained in Appendix A, the Migdal-Kadanoff  transformations 
are composed of the two procedures, that is, the potential moving and the 
one-dimensional decimation. The potential moving can be carried out for 
quantum spin systems in the same way as for classical systems and it gives 
a lower bound approximation for the free energy. It is, however, impossible 
to carry out the one-dimensional decimation exactly for quantum spin 
systems. Thus, we apply the same approximation as described in Section 2 
to this one-dimensional decimation. 

We label the direction of the axes of the d-dimensional hypercubic 
lattice as 1,2 . . . .  , and d; the one-dimensional decimation in each direc- 
tion is successively performed in order of this direction number (.see 
Appendix A). Then, we obtain, in the case of l = 2, the renormalization 
transformation of the coupling constants Kzl and Kxy 1 of 1-direction of the 
d-dimensional hypercubic lattice as 

and 

Kj, = 2 a - '  . l l n [  e 2K*' + e-&~C_ (Kzl,Kxy,) ] 

- 2 a - '  �9 �88 (K~,,K~y,)] (41) 

Kjy, = 2a-1 �9 �88 e-KzlC + (Kzl,Kxyl) ] (42) 

where C_+ are defined by Eqs. (14) and (15) (see Appendix A). 
First, we summarize the results obtained from this transformation 

concerning the critical properties of two- and three-dimensional systems 
and compare them with the results obtained from high-temperature series 
to see that this approach gives qualitatively reasonable results. 

For d = 2, this renormalization transformation has the following non- 
trivial fixed points: 

(1) an Ising fixed point at K* 1 ~0 .61  and K*y 1 = 0; 
(2) an X - Y  fixed point at K* 1 -----0.58 and K*y 1 ~ 1.31. 

For d =  3, the above transformations (41) and (42) have the following 
nontrivial fixed points: . 

(1) an Ising fixed point at K* 1 ~ 0.26 and K*xy I = 0; 
(2) an isotropic Heisenberg fixed point at K* t = K*y 1 ~ 0.34; 
(3) an X -  Y fixed point at K* 1 ~ 0.02 and Kx*yl ~ 0.28. 

Figure 5a shows the critical lines determined from this renormalization 
transformation for two dimensions. Figure 5b shows the critical lines for 
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three dimensions. The critical behavior for K z > Kxy is controlled by the 
Ising fixed point and for K~ < Kxy by the X-  Y fixed point in both two and 
three dimensions. In three dimensions, the critical behavior of the isotropic 
Heisenberg model (i.e., Kxy = Kz) is controlled by the isotropic Heisenberg 
fixed point. (19) Thus, the present model is classified into three universality 
classes, namely, the Ising, isotropic Heisenberg, and X - Y  types, as it 
should be. 

For the isotropic Heisenberg model, there is a nontrivial fixed point in 
three dimensions. On the contrary, there is no nontrivial fixed point in two 
dimensions. In other words, the isotropic Heisenberg model undergoes a 
phase transition at a finite temperature in three dimensions, but it under- 
goes no phase transition at any nonzero temperature in two dimensions. This 
result agrees well with those obtained from the high-temperature series 
expansions.(3~ 

The critical lines for two dimensions shown in Fig. 5a and for three 
dimensions shown in Fig. 5b agree very well with those obtained by the 
high-temperature series (32) in that the critical temperature is almost con- 
stant in the region 0 < Jxy /J  z <, 0.7 for the square lattice and in the region 
0 < Jxy/Jz ~ 0.8 for the simple cubic lattice. 

Next, we calculate critical exponents. Linearizing the renormalization 
transformation (41) and (42) around a nontrivial fixed point Kzl = K* 1 and 
K~yl = K'y l, we obtain 

~ 

T~= 

with 

~K~ 

o gxyl 
OK~ 

aK~y~ 
aKxY 1 K~, = r~*~ 

(44) 

where K~I and gs 1 are defined~ by Eqs. (41) and (42). Then we calculate the 
eigenvalues of the matrix T~' for each fixed point. Only one of two 
eigenvalues is relevant (i.e., greater than unity) for the Ising and X-  Y fixed 
points in two and three dimensions. The thermal exponent YT is determined 
from this relevant eigenvalue X T by the definition 

YT = In h r / l n  l (45) 

where we have used the scale factor l = 2 in this case. 
For the isotropic Heisenberg fixed point, two eigenvalues are both 
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relevant in three dimensions. One of these eigenvalues is associated with a 
scaling field which measures the deviation from the isotropic Heisenberg 
axis in the parameter space. This eigenvalue Xg does not enter the critical 
behavior of the isotropic Heisenberg model. However, this eigenvalue Xg 
determines the crossover behavior from the isotropic Heisenberg model to 
the Ising model or the X- Y model; it determines how a point being out of 
the isotropic Heisenberg axis but near the isotropic Heisenberg fixed point 
leaves this fixed point and approaches one of the other fixed points, as the 
renormalization transformation goes on. Hence, we define the anisotropy 
exponent yg as 

yg = In Xg/ln l (46) 

On the contrary, the other relevant eigenvalue is related to the distance 
from a point on the isotropic Heisenberg axis to the isotropic Heisenberg 
fixed point. Therefore, this eigenvalue X r determines the critical behavior of 
the isotropic Heisenberg model. From this eigenvalue Xr, the thermal 
exponent Yr is determined by Eq. (45). From these two exponents yg and 
Yr, the crossover exponent t~ (33'34) is determined as 

ep = Yg/YT (47) 

Table II shows the exponents thus obtained for each fixed point. 
In order to calculate the magnetic exponent YH, we consider the 

Hamiltonian with a magnetic field as 

% = ~. [ KzO;O f + Kxy(O[a f + o/Yof) ] + h<~ 07 (48) 
(ij'> i 

where h~ denotes a magnetic field coupled to the a component of spins and 
a denotes x or z. In order to apply the Migdal-Kadanoff transformations 
to this Hamiltonian, we have to generalize the one-dimensional decimation 
and the potential moving to the Hamiltonian with a magnetic field. These 

Table II. Nontrivial Fixed Points and Exponents in Two and Three 
Dimensions 

Fixed Point Position Exponents 

Dimension Type K*l K*yl YT Yg Y-qx YI4z 

2d 

3d 

Ising 0.61 0 0.75 - -  < 0 1.81 

X -  Y 0.58 1.31 0.16 - -  1.68 < 0 
Ising 0.26 0 0.94 - -  < 0 2.12 

Isotropic 

Heisenberg 0.34 0.34 0.72 1.12 2.06 2.06 
X -  Y 0.02 0.28 0.86 - -  2.08 < 0 

i i 



650 Takano and Suzuki 

generalizations are given in Appendix A. Using these generalizations, we 
can construct the renormalization transformation including a magnetic 
field. To the first order of the magnetic field, the renormalization transfor- 
mations of K~ and Kxy are unchanged. At a nontrivial fixed point K z = K* 
and Kxy = K'y, the renormalization transformation of the magnetic field h, 
takes, to the first order, the form 

h'~ = X~h~ (49) 

where 7~ is determined from K* and K*y and a denotes x or z. From this 
eigenvalue ~,,, the magnetic exponent YI-lo is given by 

Yno = ln?~/ ln  I (50) 

For the Ising fixed point in two and three dimensions, we have that Ynx < 0 
and Ynz > 0. That is, a magnetic field transverse to the Ising axis is 
irrelevant and a magnetic field parallel to the Ising axis is relevant. On the 
contrary, we have that Yl-lx > 0 and Ynz < 0 for the X - Y  fixed point in two 
and three dimensions. That is, a magnetic field parallel to the X-  Y plane is 
relevant and a magnetic field perpendicular to the X - Y  plane is irrelevant. 
For the isotropic Heisenberg fixed point in three dimensions, we have 
Ynx = Ynz > O. These results are also shown in Table II. The above results 
for the Ising fixed point in two and three dimensions show that a suffi- 
ciently small transverse magnetic field does not change the critical expo- 
nents of the Ising model. This agrees with such a result being suggested 
from the series expansion method (35) that the transverse field changes only 
the critical temperature without changing critical exponents until the criti- 
cal field is reached. The above result for the X - Y  fixed point shows that a 
sufficiently small magnetic field perpendicular to the X - Y  plane does not 
change the critical exponents of the X - Y  model. This seems to be reason- 
able from the analogy of the Ising model. It is one of the great merits of our 
simple renormalization group method that the above physical results are 
obtained quite easily in our approximation. 

The renormalization transformation of the coupling constants of the 
1-direction is given by Eqs. (41) and (42). However, the renormalization 
transformation of the coupling constants of the 2-direction is different from 
Eqs. (41) and (42). This problem of anisotropy in the Migdal-Kadanoff  
transformations is explained in Appendix A. If the coupling constants 
Km Kxyj of the m-direction satisfy the condition 

K 1 = IK 2 . . . . .  lm-lK m . . . . .  la-lKd (51) 

l being the scale factor, then the renormalized coupling constants K~, also 
satisfy this condition. In this case, the renormalization transformation of 
each K m is essentially reduced to Eqs. (41) and (42) and makes no trouble. 
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Therefore, we regard the Migdal-Kadanoff transformations as renormaliza- 
tion transformations for a model whose coupling constants satisfy the 
condition (51). See Appendix A. 

In order to compare the results obtained by this approach with those 
by other theories which usually study the case of isotropic coupling con- 
stants (i.e., K 1 = K 2 . . . . .  Kd), we consider the following procedure. 
First, we consider a model with isotropic coupling constants I~. Then, from 
this model, we construct a model whose coupling constants satisfy the 
condition (51) by the potential moving. According to the variational 
method, (24~ the potential moving has to conserve the total magnitude of 
coupling constants of any interaction. This means that the new anisotropic 
coupling constants Km have to satisfy the condition 

d 
2 Km = dI~ (52) 

m=l 

From Eqs. (51) and (52), the relation between K m and I~ is given by 

ld-l([- 1) dl~ (53) 
K1 = lm-lKm - I d -  1 

Using this relation, we can compare the results obtained by the Migdal- 
Kadanoff transformations with those by other theories. 

In Table III, we compare the results obtained by our new method 
concerning the critical points and exponents Yr, Y~/, and ~ for the Ising, 
isotropic Heisenberg, and X - Y  models in two and three dimensions with 
those obtained by other approaches. For the Ising, isotropic Heisenberg, 
and X -  Y models in three dimensions, the critical inverse temperature/~c or 
K1c for each model is in rough agreement with that obtained from the 
high-temperature series. (36'31'37) The exponents Yr and y/~ are in poor 
agreement. The qualitative features are, however, in good agreement: The 
relative magnitudes of the critical values/~c or KI~ for these models agree 
with the results obtained from the high-temperature series, respectively. 
According to the analyses by the high-temperature series, the Ising model 
has the largest thermal exponent y(r 1~, the X - Y  model has the next largest 
y(r xr~, and the isotropic Heisenberg model has the smallesty(ff ~. That is, the 
singularity of the specific heat of each model is stronger in this order. Our 
results about the thermal exponent Yr show a similar tendency, namely, 

y(I) > y ( x r )  > y(Tn), i.e., a (*~ > a (xr~ > a (I+} (54) 

through 2 - a = d / y  r. Similarly we obtain v (1~ < v (xr~ < v ("~ through 
v = y77 I. These inequalities concerning critical exponents were derived in a 
plausible way by one of the authors. (38~ The high-temperature series 
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Table III. The Critical Couplings and Critical Exponents of the Ising, 
Isotropic Heisenberg, and X -  Y Models in Two and Three Dimensions ~ 

Renormalization Series or exact 

2d 

The Ising model 

K c K2~ ~ 0.61 0.44 (exact) (39) 

K c ~ 0.46 

Y T  0.75 1 (exact) (39) 

YH 1.81 1.875 (exact) (4~ 

The X-  Y model 

K c Kj~ ~ 1.20 0.64 (series) (2~ 
Kc ~ 0.90 

YT- 0.16 y ~ 2.5 (series) (2~ 
y~/ 1.68 Lx --~ 2.8 (series) (2~ 

The Ising model 

K c K i c ~ 0.26 0.22 (series) (36) 
K~_~0.15 

YT 0.94 1.6 (series) (36) 
Y/t 2.12 2.5 (series)(36) 

3d 
The isotropic 

Heisenberg 
model 

K c /s c ----- 0.34 0.30 (series) (30 
K c ~ 0.20 

YT 0.72 1.4 (series) (31) 

YH 2.06 2.5 (series) (31) 
1.56 1.25 (series) (34) 

K~ K I c ~ 0.28 0.25 (series) (37) 

Kc ~0.16  
The X -  Y model 

YT 0.86 1.5 (series) (37) 

YH 2.08 2.5 (series) (37) 

For three-dimensional models, hyperscaling relations are assumed in expressing the 
exponents obtained from series analyses (31'36'37) in terms of y~- and Yt~. For the two- 
dimensional X - Y  model, the exponents 7 and A estimated from series expansions (2~ are 
shown here instead of Y r  and ya,  because the series analysis (2~ suggests that hyperscal- 
ing may be violated in this model. 

e x p a n s i o n s  sugges t  t h a t  t h e  m a g n e t i c  e x p o n e n t  YH, c o n s e q u e n t l y  t he  e x p o -  

n e n t  8, t a k e s  a l m o s t  t he  s a m e  v a l u e  fo r  t he  I s ing ,  i s o t r o p i c  H e i s e n b e r g ,  a n d  

X - Y  m o d e l s  in  t h r e e  d i m e n s i o n s .  T h e  v a l u e s  of  t he  p r e s e n t  m a g n e t i c  

e x p o n e n t s  y~/, fo r  t he se  m o d e l s  a re  a l so  v e r y  c lose  to  e a c h  o t h e r .  

F o r  t h e  I s i n g  m o d e l  in  t w o  d i m e n s i o n s ,  t h e  c r i t i ca l  v a l u e  K c ~ 0.46 is 

in  v e r y  g o o d  a g r e e m e n t  w i t h  t h e  e x a c t  v a l u e  K c ~ ' 0 . 4 4 .  (39) T h o u g h  t h e  
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thermal exponent Yr ~ 0.75(24) is not so good in comparison with the exact 
value Yr = 1-0, (39) the magnetic exponent yn ~ 1.81 is in good agreement 
with the exact value YH = 1.875.(4~ 

As mentioned above, the present simple renormalization group ap- 
proach gives qualitatively reasonable results for two- and three-dimensional 
models except for the two-dimensional X-Y model. 

For the X-Y model in two dimensions, the critical value /~c ~ 0.9 
seems to be too large compared with the value K c ----- 0.64 estimated from the 
high-temperature series. (2~ The thermal exponent Yr obtained from our 
approach is fairly small; this means that the singularity of the specific heat 
is very weak. This agrees with the proposition that the specific heat is 
nonsingular, which has been confirmed from the high-temperature se- 
ries. (2~ The fact that Yr is very small also means that the corresponding 
eigenvalue ~r is semimarginal, that is, Xr~ 1. The existence of a marginal 
scaling field suggests the existence of the fixed line; this fixed line is 
expected to appear for the classical X-Y and planar models. (41-49) There- 
fore, this semimarginal thermal exponent Yr suggests that the two- 
dimensional spin-l/2 X-Y model shows the critical behavior of the same 
type as the classical models do. This small value of Yr  also leads to a large 
value of the critical exponent u of the susceptibility; this suggests an 
exponential divergence of the susceptibility. Though the susceptibility is 
expected to diverge exponentially for the classical models, (43-47) a usual 
power law with the exponent "f--2.5 is suggested from the high- 
temperature series for the spin-l/2 X-Y model. (2~ This small value of YT 
is not consistent with the above prediction obtained from the high- 
temperature series about the susceptibility. 

Next, we argue the validity of our approach. As explained before, the 
transformation is obtained by using two approximations, that is, the poten- 
tial moving approximation and the cluster approximation used in Section 2 
for the one-dimensional decimation. The potential moving approximation 
for classical systems becomes exact in the two limits of infinite and zero 
temperatures. (24~ However, generally speaking, the potential moving be- 
comes exact only in the limit of infinite temperature in the quantal case of 
general anisotropy with Jxy =/= O. In the special case Jz > Jxy, we can prove 
that the free energy obtained by using the potential moving agrees with the 
exact one in the zero-temperature limit. After all, the potential moving 
approximation for quantum systems is a high-temperature approximation 
and the corrections to it start at the second order in Kz and Kxy in 
general. (24'5~ The cluster approximation used in Section 2 for one- 
dimensional decimation is also an approximation good at high tempera- 
tures. By calculating the correction terms in the same way as in Section 2, 
we can show that the corrections to the cluster approximation for the 
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Migdal-Kadanoff transformation in two dimensions start at the fourth 
order in K z and Kxy. Thus, both approximations used in the present paper 
are high-temperature approximations. Thus, the present approximate 
method is an approach good at high temperatures, just as other renormal- 
ization group approaches to quantum systems are. (3-1~ 

Barma et al.(25) have pointed out in their comment that the present 
approach leads to strange behaviors in some cases. We examine the 
comment of Barma et al. Their comment can be summarized as follows: 

1. There is no X-Y fixed point at zero temperature in any dimension. 
2. The nontrivial X-Y fixed point X* continues to exist even for 

d < 2 .  
3. A new X - Y  fixed point Y* which is stable emerges from zero 

temperature as d decreases below 2. 
4. The zero-temperature entropy of the isotropic Heisenberg model 

given by the transformation is incorrect. 
5. The lower critical dimensionality d c for the isotropic Heisenberg 

model depends on the scale factor I (dc = 2 which is exact for l = 2, 
d c ~ 2.11 for / =  3, and d~ becomes the worse for the larger l). 

As mentioned before, the present approach is a high-temperature 
approximation. The above points 1, 4, and 5 concern the nature of the 
system at zero temperature, where the present approach is invalid. There- 
fore, the present approach may give incorrect results at zero temperature, 
which does not mean that the present approach is invalid at higher 
temperatures. We must note further about comment 5 that, for classical 
systems, the Migdal-Kadanoff transformations become exact in the two 
limits of zero and infinite temperatures. Therefore, the Migdal-Kadanoff 
transformations give the correct lower critical dimensionality d C indepen- 
dent of the scale factor l for classical systems. For quantum systems, 
however, the present approach becomes exact only in the limit of infinite 
temperature. Therefore, it cannot give the correct d c. We should be satisfied 
with the result that there is no fixed point for the two-dimensional isotropic 
Heisenberg model in the high-temperature region where the present ap- 
proach is valid. Furthermore, the present approach for dimensions higher 
than one is not improved by increasing the scale factor I, though the 
present approach for one dimension is improved for larger l, as shown in 
Section 2. The reasons are as follows. First, the amount of the potential 
moved is increased by increasing the scale factor l, which is considered to 
make the approximation worse. Next, there are always the bonds not 
included in the clusters in which the approximate decimation is performed, 
while each bond belongs to one of the clusters in one dimension. Therefore, 
the amount of the quantum effects neglected is not reduced by increasing 
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the scale factor l for dimensions higher than one. Thus, it has less meaning 
to make l larger. 

The points 2 and 3 are crucial. The unstable X -  Y fixed point X* and 
the stable X - Y  fixed point Y* in dimensions lower than two may be 
superficial. Therefore, the fixed point X* in two dimensions may be also 
unreliable, in the sense that the fixed point X* is located at too low 
temperature for the high-temperature approximation to be reliable. This 
does n o t  mean that the approximation is invalid in the whole range of 
temperatures. As mentioned before, the approximation is valid at least at 
high temperatures. A similar situation occurs for some other renormaliza- 
tion group approaches to quantum spin systems. (3'6'8'9) That is, these 
approaches also yield a superficial fixed point (an isotropic Heisenberg 
fixed point in two dimensions) in the temperature region where these 
approaches are considered to be invalid. Another possible interpretation of 
a pair of fixed points such as X* and Y* by Tatsumi ~5~ is discussed in the 
next section. 

Though the X-  Y fixed point X* in two dimensions may be unreliable, 
the marginal critical behavior suggested from this fixed point is not  totally 
unreliable: This semimarginal critical behavior can be seen from the flow 
of the renormalization transformation at higher temperatures, where the 
present approach is expected to be valid. Figures 6a and 6b show the 
velocity of the flow of the renormalization transformation in two and three 
dimensions, respectively. By the semimarginal critical behavior we mean 
that the velocity in these figures approaches the horizontal axis which 
represents the zero velocity in the manner that it is nearly parallel to the 
horizontal axis. Such an aspect can be seen from Fig. 6a for the two- 
dimensional X - Y  model. The point is that this aspect is distinct even at 
higher temperatures (i.e., 1K11-~0.6-0.8 ). Comparing the velocity flow line 
of the two-dimensional X-  Y model with those of the Ising and Heisenberg 
models in two dimensions, as shown in Fig. 6a, and comparing Fig. 6a for 
two dimensions with Fig. 6b for three dimensions, we can clearly see the 
marginal nature of the two-dimensional X - Y  model even from the high- 
temperature part of the figures. Thus, the results of the present approach 
suggest that the two-dimensional spin- 1/2 X-  Y model shows the marginal 
critical behavior which is expected for the two-dimensional classical X - Y  
and planar models, though the critical inverse temperature K c and the 
exponents Yr and y/r obtained from the X - Y  fixed point X* in two 
dimensions may be unreliable. 

The qualitatively reasonable results concerning the critical properties 
of the two-dimensional Ising model and of the Ising, X-Y, and isotropic 
Heisenberg models in three dimensions are obtained from the fixed points 
which are located at high temperatures where the present approach is 
expected to be valid. 
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Fig. 6. Velocity of the flow of the renormalization transformation, which is measured by 
( I K ' [ -  IKI)/ln 2, where IKI = (g~ + Kx~l) I/2. Figures (a) and (b) show the results for two and 
three dimensions, respectively. "i.H.", "XY" and "I." denote the isotropic Heisenberg, X-Y 
and Ising models, respectively. For the X-Y model, we calculate (IK'[ - IK1)/ln 2 and IK] after 
applying the renormalization transformation to the pure X-  Y model (i.e., K z = 0) a few times. 

4. CONCLUSION AND DISCUSSION 

W e  have  p r o p o s e d  a s imple  a p p r o x i m a t e  d e c i m a t i o n  m e t h o d  for  
o n e - d i m e n s i o n a l  q u a n t u m  sp in  systems. T h e  s p i n - l / 2  an i so t rop ic  He i sen-  
be rg  m o d e l  is s tud ied  in  this a p p r o x i m a t i o n .  W e  also ca lcu la te  the correc-  
t ions  to this a p p r o x i m a t i o n  to show tha t  the  a p p r o x i m a t i o n  is a h igh-  
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temperature approximation and that it is improved by increasing the scale 
factor 1 at least at high temperatures. The thermodynamic properties 
obtained from the present approximation are in good agreement with those 
obtained by Bonner and Fisher (28) and by Katsura (29) at high tempera- 
tures. 

Using this approximation, we have generalized the Migdal-Kadanoff 
transformations to quantum spin systems. By the help of this generalized 
Migdal-Kadanoff transformation with the scale factor l = 2, the two- and 
three-dimensional spin-l/2 anisotropic Heisenberg models are studied. 
This simple renormalization approach gives qualitatively reasonable results 
for two- and three-dimensional models except for the two-dimensional 
X-Y model. This approach for higher dimensions is a high-temperature 
approach in general. 

The unstable X-Y fixed point X* for two dimensions continues to 
exist in dimensions lower than two, and a new stable X-Y fixed point Y* 
emerges from zero temperature as the dimension decreases below two, as 
pointed out by Barma et  al. (25) These fixed points in dimensions lower than 
two may be superficial. Therefore, the fixed point X* in two dimensions 
may be unreliable in the sense that it lies at low temperature where the 
present approach may be invalid. However, from the renormalization flow 
in the high-temperature region where the present approach is considered to 
be valid, we can see the marginal nature of the critical behavior of the 
two-dimensional spin-l/2 X - Y  model. Thus, it is suggested that the 
two-dimensional spin-1//2 X- Y model shows the critical behavior similar to 
that expected for the classical X-Y and planar models. 

Recently, Tatsumi (51) proposed a modification of the present approach 
to construct a transformation which transforms the pure X-Y model (i.e., 
K z = 0) to itself. He also obtained a pair of stable and unstable fixed points. 
He interpreted these fixed points as follows: As the dimensionality d 
decreases, these unstable and stable fixed points approach each other and 
merge into a marginal fixed point at the critical dimensionality dc. He 
obtained the result that d c thus determined is close to two. If we adopt this 
interpretation, the result for the present approach is as follows: The fixed 
points X* and Y* merge into a marginal fixed point at the dimensionality 
dc-----1.95, and the critical inverse temperature Kxylo for the pure X - Y  
model is approximately 2.5 in this case. See Fig. 7. The fact that d~ thus 
determined is very close to two seems to support our interpretation con- 
cerning the two-dimensional spin-l/2 X - Y  model mentioned above, 
though the value of Kxylo is too large to be reliable in the present approach. 

There exists a similar situation in the approach of Dekeyser et a/.(8): 
They determined the value Pc of the parameter p of the linear renormaliza- 
tion transformation in two dimensions so that the X- Y fixed point may be 
a marginal one, and obtained the conclusion with which our interpretation 
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The fixed points X* and Y* approach each other as the dimensionality d decreases. 
They merge into a marginal fixed point at d = de. 

is consistent. Under the condition p < Pc, their approach gives a pair of 
unstable and stable fixed points (see Fig. 1 of Ref. 8) as in the present case 
for d c < d < 2. Thus, Dekeyser et al. adjusted the parameter p in order to 
get a marginal X-Y fixed point, while Tatsumi adjusted the dimensional- 
ity d. 

As an application of our approach to other quantum systems, we have 
calculated the thermodynamic properties of the half-filled Hubbard model 
in one dimension by using the approximate decimation explained in Sec- 
tion 2. Details of this calculation will be reported in the near future. (52) 

APPENDIX A: THE M I G D A L - K A D A N O F F  TRANSFORMATIONS 

In this appendix, we give a derivation of the Migdal-Kadanoff trans- 
formations, following Kadanoff. (24) 

Kadanoff derived the potential moving as an approximation which 
gives a lower bound of the exact free energy by using a variational 
method. (24) This variational method is valid also for the quantum spin 
systems, because the Hamiltonian of the system is Hermitian. According to 
the variational method, we can move potential terms from one set of bonds 
in the lattice to equivalent bonds, but we must not change the total amount 
of any type of potential. This is called "'potential moving." 

We consider the following Hamiltonian on the d-dimensional hyper- 
cubic lattice: 

d 

~ =  E E { K ~ m g ~ ~ 1 7 6 1 7 6 1 7 6  (A. 1) 
m=l <O'>~m i 
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where a / ,  a/~, and ~i y denote the Pauli spin operators on the ith site, 
m = 1,2 . . . . .  d label the directions of the nearest-neighbor bonds and 
~<,)>~,n denotes a sum over all the nearest-neighbor pairs on the m- 
direction bond. Below we set, for a moment,  Kx, . = Ky m = K~y m and h = 0. 
First, we consider the decimation which changes the length scale of 
l-direction by a factor l as shown in Fig. 8a. By the potential moving, we 
move the bond between spins to be eliminated by the decimation to the 

> 

,L .L ~' ~( T I<*I 
}+ I, > I 

(a) (b) 

- __~ ] 

(c) (d) 

> 

(e) 

Fig. 8. The Migdal-Kadanoff transformation in two dimensions. 
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equivalent bonds between spins to remain after the decimation, as shown in 
Fig. 8a. As a result, the spins to be eliminated are on the one-dimensional 
chains of bonds as shown in Fig. 8b. Therefore, if Kxy I = 0, we can carry 
out the decimation exactly. However, we cannot carry out the decimation 
in the c a s e  Kxy 1 ~= O. Then, using the same approximation as was used in 
Section 2, we carry out the decimation approximately to get a new 
nearest-neighbor interaction between the remaining spins. Now, we have a 
new lattice whose lattice constant of 1-direction is l times as large as that of 
the original lattice; Fig. 8c shows this new lattice. The new coupling 

K' constants K"  = ()?~7~) of m-direction bond are given as functions of the 
original coupling constants K m = (~, , )  of m-direction bond by K] = R/(KI) ! xym 
and Km = lKm, (m = 2 , 3 , . . . ,  d), where l denotes the scale factor; the 
functions RI(KI) are determined from Eq. (7). We apply this procedure 
which rescales the length of one direction by a factor l to 2-, 3-, . . . .  and 
d-directions successively as shown in Figs. 8c and 8d. Then, we have a 
lattice whose lattice constant of every direction is l times as large as that of 
the original lattice. See Fig. 8e. The new coupling constants K~ of m- 
direction bond are finally given by 

K ~  = l d - m R l (  [ m -  1Kin) ( A . 2 )  

This is the renormalization transformation to be derived. This transforma- 
tion has a problem: Each interaction of different direction has a different 
form of renormalization transformation. Therefore, if we start with iso- 
tropic interactions K z = K 2 . . . . .  K d, we get anisotropic interactions 
after this renormalization transformation. However, if the coupling con- 
stants K m satisfy the condition 

I~ 1 ~ / K  2 . . . . .  l m -  1Krn -~- . . . .  l d-  1~  d (A.3) 

then the renormalized coupling constants K" satisfy the same condition. In 
other words, if we assume that the coupling constants satisfy the condition 
(A.3), the renormalizatioff transformation (A.2) for each direction is essen- 
tially the same and can be reduced to one of them. Therefore, in order to 
avoid the anisotropy in the renormalization transformation, we restrict 
ourselves to applying the renormalization transformation (A.2) only to a 
system whose coupling constants satisfy the condition (A.3). 

Finally, we apply the Migdal-Kadanoff  transformation to the model 
with a magnetic field (i.e., h ~ 0). There is ambiguity in moving the 
magnetic field term. We treat below the magnetic field term so that there 
may be no anisotropy in the renormalization transformation. Let 

Kin= K~m 
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denote the nearest-neighbor coupling constants of m-direction bond as 
before. We assume that the coupling constants Km satisfy the condition 
(A.3) in order to avoid the problem of anisotropy in the case h --- 0. In order 
to change the length scale of the 1-direction, we first move the bonds 
between spins to be eliminated to the bonds between spins to remain as 
shown in Fig. 9a. Then using the same approximation as in Section 2, we 
carry out the decimation as shown in Fig. 9b. Then the new coupling 
constants K~, of the m-direction and the new magnetic field h' are given by 

ih lh /~h ~ I h 

!h~h !h !h ~h !h 

(a) (b) 

> 

h.,. Ah 

h. &h 

h+&h 

h.,. &h 

h+Ah 

h+2&h 

~ ~h.2&h 

h +2Ah 

+2&h 

(c) (d) 

> 

h + 3Ah 

h +3Ah 

h .,. 3Ah 

(e) 

Fig. 9. The Migdal-Kadanoff transformation for the model with a magnetic field in two 
dimensions. 



662 Takano and Suzuki 

K] = Rt(K 1 , h), h' = rl(K t, h) and K~, = lKm, (m = 2, 3 . . . .  , d), where K' 1 
and h' are determined from Eq. (7) with H(~r0,ol) = Kz]o~)o ~ + K~lo~a ~ + 

I z Ky]o~o { +-ih(oo + of). Next, we consider changing the length scale of the 
2-direction. In order to avoid the problem of anisotropy, we not only move 
the nearest-neighbor interactions but also the additional magnetic field 
Ah = h ' - h  as shown in Fig. 9c. Then, we carry out the decimation 
approximately as shown in Fig. 9d and get the new coupling constants K~, 
and the new magnetic field h" as follows: K~' = Rt(K~,h  ) = K~, h ' =  
rt(K~,h) + l ( h ' -  h ) = ( / +  1 ) h ' -  lh and K"  = lK~ (m = 1,3,4 . . . . .  d). 
Applying this procedure to 3-, 4 - , . . . ,  and d-directions successively, we 
obtain the final renormalized coupling constants K~, of m-direction and 
magnetic field h' as 

K m = l d- mR,(lm-]Km, h) (A.4) 

and 

h ' - l d - 1  ~ S - ( h  ~-S 1 r t ( K " h )  - (A.5) 

See Fig. 9e. These new coupling constants K" also satisfy the condition 
(A.3). Thus, we obtain the renormalization transformation without the 
problem of anisotropy. 
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